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Abstract 
 

Social media platforms are increasingly used during 
disasters. In the U.S., victims consider these platforms 
to be reliable news sources and they believe first 
responders will see what they publicly post [1,2]. 
While having ways to request help during disasters 
might save lives, this information is difficult to find 
because non-relevant content on social media 
completely overshadows content reflective of who 
needs help. To resolve this issue, we develop a 
framework for classifying hurricane-related images 
that have been human-annotated. Our transfer 
learning framework classifies each image using the 
VGG-16 convolutional neural network and multi-layer 
perceptron classifiers according to the urgency, 
relevance, and time period, in addition to the presence 
of damage and relief motifs [3]. We find that our 
framework not only successfully functions as an 
accurate method for hurricane-related image 
classification, but also that real-time classification of 
social media images using a small training set is 
possible. 
 
 
1. Introduction  
 
     Given that 9-1-1 emergency systems have 
experienced overloading during recent disasters in the 
US, social media data provides opportunities during a 
crisis for first responders and humanitarian non-
governmental organizations (NGOs) to identify 
individuals who may need to evacuate or are seeking 
help. However, as previous work has highlighted, 
searches of social media during natural disasters have 

high frequencies of non-relevant content both for text 
[4] and images [5]. Though there is interest in studying 
images posted during hurricane events, much of the 
work has been focused around identifying the 
authenticity of images [6]. While there is some work 
seeking to identify hurricane-related images on social 
media through machine-learned methods, these 
approaches still demonstrate that ‘modeling the 
relevancy of certain image content is another core 
challenge that needs to be addressed more rigorously’ 
[7]. The main contribution of this study is to address 
this core challenge and evaluate whether we can obtain 
high performance classifiers with a limited number of 
human-annotated images. Ultimately, we find that we 
can use just 1,128 human-annotated images and 
transfer learning with the VGG-16 convolutional 
neural network to classify hurricane-related images for 
a range of attributes. These findings will enable first 
responders and humanitarian NGOs to identify images 
posted by those needing help using small training sets. 
 
2. Related work  
 
2.1. Images on social media 
 
     Though the posting of images and video during 
natural disasters has become an important part of how 
these crises are socially experienced and understood 
[3,7,8] studies of visual content during disasters remain 
heavily overshadowed by textual analyses. Indeed, 
there is a dearth of work exploring images posted on 
social media during disasters. Early work by Gupta and 
colleagues [6] found that images shared on Twitter 
during Hurricane Sandy were often spread through 
retweets. In their research on Instagram images shared 



 

during that same hurricane, Murthy et al. [3] argue that 
images emphasized how people experienced the 
disaster firsthand, and these images reflected the 
vantage point of disaster victims rather than official 
responders. These user-produced images were often 
shared much faster than what journalists were able to 
report. Their study was novel given that Hurricane 
Sandy was the first major natural disaster where 
Instagram was used. Given that Hurricane Harvey was 
a unique disaster from a social media viewpoint, we 
follow Murthy et al.’s [3] advice “to develop ways of 
tackling these obstacles” for future crises that are 
socially experienced on Twitter. 
 
2.2. Machine learning in disasters 
 
     Much work has been done regarding classifying 
Twitter data as relevant or non-relevant [9] (‘signal’ or 
‘noise’). For example, the Artificial Intelligence for 
Disaster Response (AIDR) system performs automatic 
classification. Though it is designed for tweets, it is 
specifically a text-only system. AIDR uses machine 
learning methods that are trained on human coded data. 
This has produced quite impressive results. 
Specifically, AIDR’s accuracy has been reported at 
80% for identifying relevant tweets during the 2013 
Pakistan earthquake [10]. Tweedr is another machine-
based pipeline that uses tweets to extract actionable 
information for disaster relief workers [11]; this tool 
uses classification, clustering, and extraction.  
     Lagerstrom et al. [12] explored image classification 
using images from a bush fire in the Australian state of 
New South Wales. They used 6,214 images from 
tweets to classify images into fire and not fire-related 
classes, achieving an accuracy of 86%. While much of 
the past research with AIDR and Tweedr used text-
based data for classification, recent work [9] studying 
the use of social media used during Hurricane Harvey 
employs supervised learning methods, specifically with 
images. O’Neal et al.’s [9] study, however, was not 
focused on Twitter, but instead evaluated the use of 
supervised learning based on samples of private social 
media data. While their work did not evaluate deep 
learning methods and did not use training sets 
developed from noisy, public social media platforms, 
their work suggests machines are likely able to learn 
from human knowledge and leverage this to classify 
the basic features of images by categories (e.g., rescuee 
and rescuer). 
     One of the few studies to employ deep learning 
methods with disaster-related images is Nguyen et al.’s 
[7] study of two earthquakes, a typhoon, and a 
hurricane using data obtained from the AIDR platform. 
They used human annotations from AIDR and 
Crowdflower, a crowd-sourcing platform. For the four 

cases they studied, they assessed whether images 
reflected severe, mild, or no damage. Their work 
highlights the challenges of working with social media 
images – including redundant and irrelevant images 
since their overall results, through promising, reflected 
an F1 score of 0.67, leaving room for improvement.  

 
3. Dataset  
 

To collect data, we used Twitter’s streaming API. 
Specifically, we used the API to collect data from the 
‘Spritzer’ stream, a free data pipeline that allows 
researchers to collect 1% of all tweets at random, 
selected based on the time tweets are posted [13]. We 
studied tweets from August 17, 2017 to September 17, 
2017 and collected all Hurricane Harvey-related tweets 
with the keywords: 'hurricane', 'harvey', 
'hurricaneharvey', and 'harveyhouston'. From these 
tweets, we extracted all the media-related links to 
retrieve images. Duplicate images were removed by 
computing an MD5 checksum for each image. The 
resulting total number of images was 23,692. After 
duplicates and empty images were removed, 17,483 
images remained.  

To develop the training dataset for our study, we 
randomly sampled 1,128 images (approximately 6.45% 
of all images collected) and human-coded these images 
using a rubric with categories drawn from existing 
research. First, we coded time period, which 
was defined as pre-storm (August 17, 2017 to August 
25, 2017; 124 images), landfall (August 26, 2017 to 
September 1, 2017; 735 images), and Harvey’s 
aftermath/immediate cleanup (September 2, 2017 to 
September 17, 2017; 269 images). Urgency was the 
second category. Saldana [14] suggests that identifying 
the level of importance of a social media post by 
adding a magnitude rating to the coding scheme is 
vital. Therefore, images were rated  (4 = highly urgent, 
3 = moderately urgent, 2 = somewhat urgent, 1 = not 
urgent, 0 = spam/unrelated to Hurricane Harvey), 
similar to Iakovou and Douligeris' [15] 
recommendations on severity of a hurricane. The type 
of image in a disaster was drawn from Paul’s [16] 
work on images posted to Twitter during the 2010–11 
Queensland floods. Paul [16] argues that the major 
themes for tweets immediately following a disaster 
include requests, reports and reactions. Finally, the 
notion of an image motif was drawn from Murthy et al. 
[3] who stress that the reoccurring patterns of images 
posted during disasters allows viewers to understand 
the social experience of disasters. These motif 
categories included: ad, animals, damage, drink, food, 
gear, macro, outside, people, relief, and ‘other’. In 
terms of motif classification, Paul [16] suggests these 
concepts are theoretically meaningful in disasters, 



 

particularly relief and damage. For the purpose of this 
study, we choose to use Paul’s [16] rationale to 
specifically investigate the ‘damage’ and ‘relief’ 
themes. Despite the comparatively small size of our 
dataset, recent efforts suggest that high-performance 
machine learning models can be constructed even with 
a dataset with limited samples [17]. 
 
 
4. Deep learning pipeline  
 
     In this section, we describe the methodology used to 
classify images by time period, relevancy, urgency, 
and the presence of relief and damage themes. A high-
level overview of our framework is illustrated in 
Figure 1. 
     The first stage of our pipeline leverages transfer 
learning to extract features from the sample images. 
Transfer learning refers to applying knowledge gained 
by solving a prior problem to a new, but related 
problem. The effectiveness of deep learning methods, 
like Convolutional Neural Networks, is often limited 
by the size of the training set [18]; transfer learning 
offers the benefits of these deep learning methods 
without requiring a large training set. The high 
dimensionality of images, typically represented as a 
matrix of pixels where each pixel has a value for its 
red, green, and blue elements, can be challenging for 
traditional machine-learning methods to interpret. 
 

 
Figure 1. High-level overview of image 
classification pipeline 
 
     Instead of feeding raw images into models, images 
can be fed into convolutional neural networks to 
reduce their dimensionality. These networks use 
convolutional and pooling layers to extract features, or 
“feature vectors” before making a classification or 
regressive prediction. These feature vectors can be 
understood as the collection of nonlinear features, such 
as edges and shadows, that represent a condensed 
version of the original image. In this way, pre-trained 
convolutional neural networks trained on large, diverse 
datasets can be used as feature extractors for other 
machine learning tasks [19].  

     As part of the ImageNet Challenge 2014, Simonyan 
and colleagues [20] leveraged many small 
convolutional filters to create a highly accurate 
convolutional neural network that performed best at 
classifying images into 1000 categories. For the 
purpose of this study, we use their model, VGG-16, as 
our baseline architecture for the image classifiers we 
construct. Specifically, we collected the output from 
the second-to-last layer of VGG-16 before 
classification and treat this output as a “feature vector” 
constituting a low-dimensional representation of each 
image. 
     After extracting the feature vectors for each model, 
five multi-layer perceptron networks were constructed 
to classify images by time period, urgency, relevance, 
and the presence of ‘damage’ and ‘relief’ themes. We 
employed nearly identical model architectures for the 
binary classifiers (‘relief’ and ‘damage’ classifiers) and 
the multiclass classifiers (time period, relevancy, 
urgency), with the exception of the output layers.  
     For each model, the image and label pairs were 
independently and randomly split into a training and 
validation set, where each set represented a stratified 
random sample of images and their corresponding 
labels. Ultimately, the training set constituted 80% of 
the total images and the validation set consisted of the 
remaining 20% of images. For each classifier, loss 
minimization was achieved using the Adam optimizer, 
which has been shown to converge faster compared to 
traditional methods like stochastic gradient descent 
[21].  
     Each binary classifier was optimized against the 
appropriate cross-entropy loss function, 
 

                                (1) 
  
where M is the total number of candidate categories, 
yo,c is a binary indicator if class label c is the correct 
classification for observation o, and po,c is the predicted 
probability of observation o belonging to class c [22]. 
In addition, we recorded the accuracy of each classifier 
on both the training and validation set at each epoch of 
training. To combat the effect of class imbalance on 
model training, we scaled the penalty on 
misclassification according to the proportion of 
samples which contained that label.  
     Furthermore, each model was trained with early-
stopping, which halts model training once a decrease in 
training loss is accompanied by a significant increase 
in the validation loss of the model over each epoch of 
training; this method prevents models from overfitting. 
Each epoch was trained in batches of 32. Moreover, 
each feed-forward network consisted of five dense 
layers, with each layer having twenty nodes. 



 

 
Figure 2. Generalized classifier model 
architecture 
 
     Each layer contained a rectified linear, or ‘ReLu’ 
activation function to promote sparse activation and 
efficient gradient propagation, which, in turn, 
promoted mathematical stability and computational 
efficiency [23; 24].  Each dense layer was succeeded 
by a dropout layer, which randomly reset the weights 
of a subset of nodes in that layer. Finally, the output of 
the last dense layer was passed through either a 
sigmoidal or softmax activation layer so that the final 
output of each network represented a classification 
probability for each of the relevant classification 
categories. Figure 2 illustrates the generalized 
architecture used for all of the models constructed in 
this study.  
 
5. Results 
 

     For each classifier, we collected the accuracy and 
categorical cross-entropy loss for the training and 
validation set. In addition, we evaluated the ability of 
our classifiers to discern between categories using a 
combination of micro-F1 score, macro-F1 score, and 
confusion matrices. In cases where classes were 
imbalanced, reporting predictive accuracy alone can be 
misleading since a classifier that simply classifies the 
most frequent class can be highly accurate but have 
very little predictive power [25]. In these scenarios, we 
examined the predictive power of the classifiers in the 
context of this class imbalance. Traditionally, the F1 
score is computed as the harmonic mean between the 
recall and precision of a classifier; however, in the case 
where class imbalance exists, the micro-F1 score, 
which is the average of F1 scores across categories 
weighted by class occurrence, can be a stronger 
indicator of classifier performance [26]. For this 
reason, we report both the macro (unweighted) and 
micro (weighted) F1 scores of our classifiers.  
     Furthermore, we report the confusion matrix for 
each classifier as a means to visualize the predictive 
power of each model across categories. An entry at 
row i and column j of a confusion matrix represents the 
number of samples predicted as belonging to class i 
whose ground-truth classification is the class 
represented by j. The confusion matrices and F1 scores 
were computed on the validation set. Since each 
classifier’s last layer outputs a vector of probabilities 
for each category, we took the classifier’s prediction to 
be the category with the largest softmax output. The 
performance of our models is summarized in Table 1 
below.  
 

Classifier Time 
Period Urgency Relevancy Damage Relief 

Training Loss 0.6398 0.9514 0.3313 0.1441 0.128 

Training 
Accuracy 0.7705 0.6098 0.9035 0.9957 0.9484 

Validation 
Loss 0.7515 1.0841 0.5222 0.253 0.2335 

Validation 
Accuracy 0.677 0.6195 0.8186 0.9023 0.9336 

F1 Macro    
Score 0.3735 0.5847 0.752 0.6973 0.824 

F1 Micro 
Score 0.5012 0.6157 0.811 0.4375 0.7568 

Table 1. Summary of classifier performance 
 
5.1. Time period classifier  
 
     The first classifier we constructed predicted the 
time period defined as pre-storm (August 17, 2017 to 
August 25, 2017; 124 images), landfall (August 26, 
2017 to September 1, 2017; 735 images), and Harvey’s 



 

aftermath/immediate cleanup (September 2, 2017 to 
September 17, 2017; 269 images). The time period 
classifier ultimately reached a training accuracy of 
0.7705, a training loss of 0.6398, a validation accuracy 
of 0.6770, and a validation loss of 0.7515 in 9 epochs. 
Furthermore, the time-period classifier recorded a 
macro-F1 score of 0.3735 and a micro-F1 score of 
0.5012. Figure 3 shows a heat-mapped confusion 
matrix for the time-period classifier evaluated on the 
validation data.  
     The disparity between the macro-F1 score and 
micro-F1 score, coupled with the confusion matrix, 
illustrates the strengths and limitations of the time- 
period classifier. The classifier is notably adept at 
correctly identifying images labeled as ‘landfall’; 
however, the classifier struggles to accurately identify 
images labeled as ‘pre-storm’ and ‘cleanup’. This 
inaccuracy suggests that additional coded images may 
be required to help for our framework discern between 
time periods; it is likely the case that images posted 
throughout the storm share strong similarities 
regardless of time of posting. 

 
Figure 3. Confusion matrix for the time-period 
classifier 
 
5.2. Relevancy classifier  
 
     The next classifier constructed predicted the 
‘relevancy’ of each image defined as either irrelevant 
(‘0’, 152 images), relevant (‘1’, 736 images), or 
uncertain (‘2’, 239 images). The relevance classifier 
ultimately reached a training accuracy of 0.9035, a 
training loss of 0.3113, a validation accuracy of 
0.8186, and a validation loss of 0.5222 in 18 epochs. 
Furthermore, the relevancy classifier recorded a macro-
F1 score of 0.7520 and a micro-F1 score of 0.811. 
Figure 4 shows a heat-mapped confusion matrix for the 
relevance classifier evaluated on the validation data.  

 
Figure 4. Confusion matrix for relevance 
classifier 
 
     Both the micro-F1 and macro-F1 scores recorded by 
the relevancy classifier surpass the results obtained by 
Nguyen et al. [7]. These results, combined with the 
confusion matrix (see Figure 4), support the successful 
performance of our transfer learning framework over 
existing approaches.  
 
5.3. Urgency classifier  
 
     The urgency classifier was trained to predict the 
urgency depicted in an image into different levels. 
Here, images were ranked in terms of importance to 
Hurricane Harvey (4 = highly urgent [87 images], 3 = 
moderately urgent [181 images], 2 = somewhat urgent 
[352 images], 1 = not urgent [151 images], 0 = 
spam/unrelated to Hurricane Harvey [356 images]), 
similar to Iakovou and Douligeris’ [15]) 
recommendations on severity of a hurricane. The 
urgency classifier ultimately reached a training 
accuracy of 0.6098, a training loss of 0.9514, a 
maximum validation accuracy of 0.6195, and a 
validation loss of 1.0841 in 18 epochs. Furthermore, 
the urgency classifier recorded a macro-F1 score of 
0.5841 and a micro-F1 score of 0.6157. Figure 5 shows 
a heat-mapped confusion matrix for the urgency 
classifier evaluated on the validation data.  
     Both the micro-F1 and macro-F1 scores approach 
the benchmarks established by Nguyen et al. [7], 
despite the inclusion of additional levels of urgency. Of 
the 124 images in the validation set that were at least 
‘somewhat urgent’, our framework correctly identified 
86% as at least ‘somewhat urgent’. This suggests that 
our framework, even with a limited dataset, can be 
used to filter images by urgency from the images alone 
with a degree of accuracy and discretionary power at 
least as strong as existing published work [7]. 



 

 
Figure 5. Confusion matrix for urgency 
classifier 
 
     Furthermore, our framework provides a method of 
classifying images into ‘levels’ of urgency, which 
could allow first responders and agencies to prioritize 
aid to areas where a poster’s images are identified as 
‘moderately urgent’ or ‘highly urgent’. 

 
5.4.  Relief classifier  
 
     The relief classifier was trained to identify which 
images contained the ‘image motif’ of relief identified 
by Murthy et al. [3], who stressed that reoccurring 
patterns of images posted during disasters allow 
viewers to understand the social experience of 
disasters. The ‘relief’ motif consisted of ‘images 
depicting relief efforts and relief campaigns’.  In this 
study, images were marked as either containing the 
‘relief’ theme (‘1’; 82 images) or not (‘0’; 1880 
images). Ultimately, the relief classifier reached a 
training accuracy of 0.9484, a training loss of .1280, a 
validation accuracy of 0.9336, and a validation loss of 
0.2335. Moreover, the relief classifier held a macro-F1 
score of 0.8240 and a micro-F1 score of 0.7568. Figure 
6 shows a heat-mapped confusion matrix for the relief 
classifier evaluated on the validation data.  
     While the relief classifier demonstrated accuracy 
and F1 scores commensurate with prior work, the 
classifier showed little ability to discern between 
images that contained the relief motif. Of the 17 
images in the validation set containing the relief motif, 
only 42% were accurately classified as relief-related 
images. It is likely that more relief-related images are 
needed to improve classifier performance, despite the 
flexible methodology we developed in this study.  
 

 
Figure 6. Confusion matrix for relief classifier 
 
5.5. Damage Classifier  
 
     Similar to the relief classifier, the damage classifier 
was trained to identify which images contained the 
‘image motif’ of ‘damage defined by Murthy et al. [3], 
as ‘images depicting storm-related damage to the built 
environment or otherwise.’  In this study, images were 
marked as either containing the ‘damage theme (‘1’; 
295 images) or not (‘0’; 1867 images). Ultimately, the 
damage classifier reached a training accuracy of 
0.9557, a training loss of .1441, a validation accuracy 
of 0.9027, and a validation loss of 0.2530. Moreover, 
the relief classifier held a macro-F1 score of 0.6973 
and a micro-F1 score of 0.4375. Figure 7 shows a heat-
mapped confusion matrix for the damage classifier 
evaluated on the validation data. 

 
Figure 7. Confusion matrix for damage 
classifier 
 
     At first glance, the damage classifier outperformed 
the relief classifier under the framework developed in 
this study: Of the 52 images in the validation set 
containing the damage image motif, 82% were 



 

classified correctly. This result could be because there 
were significantly more images in our dataset that were 
tagged with the damage motif than the relief motif. 
These results suggest that our framework could be used 
to filter images related to damage with a limited 
number of candidate images and without additional 
metadata. 
 
6. Conclusion 
 
     Existing approaches [7] using deep learning 
methods indicate state-of-the-art baselines with F1 
scores ranging from 0.60-0.70. Our results, particularly 
with the relevancy, urgency, and damage classifiers, 
provide evidence that high-performance, robust 
classifiers (with accuracy rates of 82%, 62%, and 91%, 
and F1-macro scores of 0.7520, 0.5847, and 0.6973 
respectively) can be obtained, even with a limited 
number of human-annotated images. The improvement 
we achieved over existing baselines is due in part to: 
(1) the use of highly trained human annotators with 
field experience in disaster contexts as opposed to 
crowd-sourced platforms, and (2) an improved 
transfer-learning pipeline using the VGG-16 CNN and 
multi-layer perceptrons, a process which requires 
significantly less training data than existing approaches 
but still achieves comparable accuracy and F1 scores.  
     Our study provides evidence that if transfer learning 
is used to build models to filter images by urgency, 
relevancy, and damage, with a limited amount of 
training data, custom models do not have to be built. 
Rather, by implementing our framework into a data 
pipeline, stakeholders—including first responders and 
humanitarian NGOs—can label a small volume of 
social media images. During future hurricane events, 
this will not only save time for those tasked with 
emergency response activities but makes possible near 
real-time analysis of large numbers of images gathered 
from social media. 
 
6.1.  Limitations and future directions  
 
     Several of the classifiers constructed were highly 
accurate (reaching validation accuracies of no less than 
.616) and matched or exceeded the benchmarks for F1 
scores established by Nguyen et al. [7]. In spite of this 
success, our results with the relief and damage 
classifiers suggest that our methodology could be 
improved in cases of extreme class imbalance, even 
though our framework was quite successful with a 
small dataset. Because of the high variability inherent 
in images posted on Twitter, the true proportion of 
images labeled with these themes is low; this poses 
challenges to researchers and stakeholders attempting 

to build and train autonomous systems to identify these 
informative images before, during, and after a disaster. 
To remedy this, we are currently investigating 
purchasing larger datasets directly from Twitter to 
increase dataset size in future studies. In addition, 
future work will include an investigation into different 
baseline models (other than VGG-16), and an 
evaluation of model architectures other than the multi-
layer perceptron to classify images from feature 
vectors. 
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