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Abstract 
 
Using social media during disasters is commonplace. In the U.S., public social media platforms 
are a go-to because people believe the 9-1-1 system becomes overloaded. Yet, social media 
requests are difficult to find because there is more noise than clear signals of who needs help. 
This study compares human-coded images posted during Hurricane Harvey to machine-learned 
‘deep-learning’ classification methods. We use VGG-16 convolutional neural network/multilayer 
perceptron classifiers for classifying urgency and time period. Qualitative results showcase the 
unique disaster experience not always captured through machine-learned methods. These 
methods, together, can parse through high-levels of non-relevant content to find relevant 
requests. 
 

Keywords: social media, disasters, deep learning, content analysis, Twitter, images, 
rescue 

[All tables and figures embedded in text for ease of online viewing] 
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Using a Combination of Human Insights and  
 

‘Deep Learning’ for Real-Time Disaster Communication 

1.1 Introduction 

 Hurricane Harvey, which struck the greater Houston, Texas, USA-region between August 

and September 2017, was considered the first post-911 American natural disaster where social 

media posts requesting aid and help superseded 9-1-1 phone systems (Rhodan, 2017). This form 

of help-seeking behavior on public social media platforms is over a decade old, but in this 

particular disaster, social media proved to be a particularly visible, often image-heavy way for 

stakeholders to disseminate information quickly (Stephens et al., 2018). In fact, during natural 

disasters in general, the images shared on social media serve as a type of near-real-time social 

sensor (Murthy, Gross, & McGarry, 2016). Text generally has much higher levels of ‘noise’, i.e, 

non-relevant information, than do images posted during a disaster as most images taken during a 

hurricane, for example, can be categorized under a finite set of motifs (Murthy et al., 2016), 

whereas text posted during the same time tends to have far more diversity. 

 During Hurricane Harvey, requesting help on social media proved effective, as various 

platforms provided citizens with up-to-the second information (King, 2018). For example, 

hashtags “#SOSHarvey” and “#HelpHouston” trended nationwide during the storm, and were 

often used as a means to flag those who needed rescue (Rhodan, 2017). It is of course no surprise 

that social media emerged as a visible platform to request assistance, as the American public uses 

social media in the course of their everyday lives (Pew Research Center, 2018). Following 

changing perceptions toward the visibility of content on social media, an American Red Cross 

study found that people believe that emergency personnel monitor social media and that their 

calls for help will be answered if they simply post a message (American Red Cross, 2012). It is 
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also clear that people, regardless whether they were directly affected by the hurricane, engaged 

with various social media platforms, and shared content on their own accord as a means of 

activism, support, or keeping up with other’s real-time status (King, 2018).  

 Further research explained that citizens use social media to request aid and relief during a 

natural disaster (Rainear et al., 2018). However, Varga et al. (2013) stresses that often Twitter 

messages directed to provide assistance are not successful in their attempts to reach victims and 

rescue organizations, due to noise/spam unrelated to the disaster and the sheer volume of 

information shared during a disaster. It is the goal of this study to understand whether machine-

based systems trained by humans can identify relevant images shared during the Hurricane 

Harvey disaster through deep learning methods. We used Twitter’s 1% random ‘Spritzer’ sample 

retrieved directly from Twitter’s streaming API to collect all tweets during our study period and 

then extracted a sample of Hurricane Harvey-related tweets with the following keywords: 

‘hurricane’, ‘harvey’, ‘hurricaneharvey’, ‘harveyhouston’. Our sample consists of 17,483 images 

that were posted within all extracted tweets before (August 17, 2017 to August 25, 2017), during 

(August 26, 2017 to September 1, 2017) and after Hurricane Harvey (September 2, 2017 to 

September 17, 2017). 1,128 (approximately 6.45%) of the images were randomly selected and 

were hand-coded by two authors using a theoretically-derived codebook (Krippendorff, 1980) to 

content analyze the type of need requested and reported. Ultimately, we argue that images 

produced on public social media during a natural disaster have value to understand how aid and 

relief can be facilitated, but finding genuine content from disaster victims is not straightforward 

and involves various complexities. Some of these challenges might be able to be identified and 

categorized by deep learning methods (particularly around whether an image may signify a case 
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of needing assistance), whereas other attributes might be better served by human interpreters. 

Our study seeks to explore which challenges are better suited to machines and humans. 

1.2 Social Media in Disasters 

 Social media plays some role in most natural and man-made disasters – whether that is 

around emergency services or soliciting aid - and this use is well established in the literature 

(Palen & Hughes, 2018). However, as social media differ and change in terms of access and 

features, users have come to use social media for varied purposes during disasters, depending on 

the type of disaster and social context (Murthy & Gross, 2017). Extant literature suggests that 

citizen use of social media focuses on warnings, response activities, and the quick dissemination 

of information (Veil, Buehner, & Palenchar, 2011). Research has demonstrated that the public 

uses social media as a resource to obtain information during a disaster (Westerman, Spence, & 

Van Der Heide, 2012). This follows larger trends that indicate social media is often an integral, if 

not prime, source of many people’s news mix in developed countries. One reason is that social 

media often provide access to updated information at a faster rate than traditional news sources. 

Specifically, Sutton, Palen & Shklovski’s (2008) early research on the 2007 California wildfires 

demonstrated that the public used social media because perceptions of official sources and 

emergency management agencies were that these organizations were not providing important 

information.  

Murthy (2018) coins this desire as part of an “update culture,” where citizens use social 

media to stay up-to-date during a disaster.  Murthy stresses that these disasters are not all natural 

ones, but that the proliferation of social media has given rise to how these platforms can be used 

in manmade disasters as well. Specifically, Potts (2013) used the London bombings in 2005 and 

the terrorist attacks in Mumbai in 2008 as case studies to explore initial social media use in these 
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manmade, terrorist disasters. Further work has looked at social media response after the Sewol 

ferry disaster in South Korea (Woo et al., 2015) and campus safety emergencies (Stephens et al., 

2013, Zheng et al., 2019). Together, these studies suggest that social media has been broadly 

used in a myriad of disaster types, though Murthy (2018) stresses that studying the specific 

platform may shed more light into how these tools can be leveraged 

1.2.1 Twitter and Disasters 

Ultimately, Twitter has become a key social medium during disasters. Lachlan et al. 

(2014) state that because Twitter can be used with mobile devices and messages can be shared 

with large audiences (including those outside one’s social network), it can be specifically useful 

during a natural disaster. In addition to a 140 (now 280) character limit, users can also link to 

URLs and images, can retweet others, comment back, and ‘like’ a tweet. Sutton et al. (2014) 

found that retweets of messages during a 2012 wildfire in Colorado were more likely to take 

place when the content was advisory, demonstrated a sense of urgency, and had clear sentence 

structure. Hurricane Sandy in 2012 was one of the first major natural disasters in which scholars 

analyzed Twitter content. Murthy and Gross’s (2017) study found that Twitter users often posted 

images and location-check-ins during Hurricane Sandy, activities which became particularly 

accentuated as the storm made landfall. Spence and colleagues (2015) also noted that over time, 

the government-promoted hashtag, “#Sandy,” was found by users as unsuitable for discerning 

useful information as the hashtag was often overshadowed by irrelevant content. 

 At the time of Hurricane Harvey in 2017, Twitter had 2.46 billon users. Harvey was 

viewed as a unique natural disaster in which Twitter and other social media provided citizens 

with a platform to communicate urgent information quickly that ultimately led to life-saving 

rescues for those who were flooded (Stephens et al., 2018). In that same study, Stephens et al. 
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(2018) discovered that social media posts during Hurricane Harvey served as public service 

announcements (PSAs), informing both those affected and those outside the storm with 

important updates. However, determining what social media posts were actually relevant was 

quite difficult for those seeking information (Smith et al., 2018). Similar to Lachlan et al.’s 

(2015) findings, the vast number of tweets related to the actual disaster of Hurricane Harvey 

varied. Mouzannar et al. (2018) stated that much of the information shared during the storm was 

not usable, and emergency responders who had to manually mine posts for important information 

often had to sift through exhausting amounts of irrelevant content. 

1.2.2 ‘Aid’ and ‘Need’ on Social Media 

The 2010 earthquake in Haiti brought to light how Twitter can be used for disaster 

outreach and fundraising on a global level (Muralidharan et al., 2011), and various humanitarian 

agencies have used Twitter as a tool for aid mobilization. For example, Frank (2010) discusses 

various organizations using Twitter for cross-promoting ways to make charitable donations after 

the Haitian earthquake. Further, David, Ong, and Legara (2016) argue that besides fundraising, 

Twitter allows users to build global awareness of a natural disaster. For example, during the 

2013 Haiyan typhoon, photos of hard-hit areas were being tweeted by relief workers on the 

ground, and then shared globally. Thus, the global public was able to be engaged, even if they 

were not directly affected (David et al., 2016). 

 In a tsunami evaluation commission report, Telford et al. (2006) suggest that the 

information shared immediately after a disaster is the most valuable for both recovery and future 

planning. If obtainable, high quality information allows both emergency services and local 

responders to provide a better emergency response. Yet, according to Goyet and Morinière 

(2006), when information is not provided in a timely manner, a lack of information becomes 
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pervasive amongst stakeholders involved in the natural disaster. Paul (2015) argues that the 

major themes that emerge for tweets immediately following a disaster include: requests, reports 

and reactions. This encapsulates requests for relief work, including basic human needs such as 

food, water, shelter and medical assistance (Todd & Todd, 2011). This is followed by requests 

for search and rescue, infrastructure protection, the recovery of lifeline services, and basic 

information updates about citizens affected by the natural disaster (Si, Wang, Hu, & Zhou, 

2011). Reports often included damage to public and private property, crime, and community 

mood and behavior. Reactions from the community regarding efforts from emergency response 

officials, or efforts from the community (e.g., volunteers, food providers) were also common. 

Paul (2015) also notes that tweets during a natural disaster are often not related to the needs of 

emergency services or providing aid, but could be denoted as spam or marketing, spiritual 

messages asking for prayers, or personal narratives. Murthy and Longwell (2013) also noted that 

various spam websites were shared at significant levels following the 2010 Pakistan floods. 

 From a volunteer and nonprofit perspective, Guo and Saxton (2014) argue that Twitter 

serves as a powerful communication tool for social change, especially in educating the public. 

However, Twitter was viewed as less of a tool for mobilization but more so for providing 

information to stakeholders and building an online community that could be later called to 

action. In their analysis of outreach organizations after the 2010 Haitian earthquake, Gurman and 

Ellenberger (2015) found that these same organizations missed opportunities to extend the reach 

of their message. However, this and other aforementioned research did not specifically 

understand the role of photos shared during a disaster on Twitter.  

1.2.3 Images on Social Media 
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The posting of images and video during natural disasters has become an important part of 

how these crises are socially experienced and understood (Murthy, Gross, & McGarry, 2016), 

though studies of visual content during disasters remains heavily overshadowed by text. The 

focus on text continues despite the tremendous amounts of information contained in images. 

Although much research on social media and disasters has focused less on the role of images, 

these initial studies show that images perform multiple functions and have value. Gupta and 

colleagues (2013) found that images shared on Twitter during Hurricane Sandy were often 

spread through retweets. In their research on Instagram images shared during that same 

hurricane, Murthy et al. (2016) argue that images emphasized how people experienced the 

disaster firsthand, and these images reflected the vantage point of disaster victims rather than 

official responders. These user-produced images were often shared much faster than what 

journalists were able to report. Their study was novel given that Hurricane Sandy was the first 

major natural disaster where Instagram was used. Given that Hurricane Harvey was a unique 

disaster from a social media viewpoint, we follow Murthy et al.’s advice “to develop ways of 

tackling these obstacles” for future crises that are socially experienced on Twitter (p. 129). 

1.3 Machine and Deep Learning Methods in Natural Disasters 

Much work has been done regarding classifying Twitter data as signal or noise (i.e, 

relevant or non-relevant, respectively). For example, the Artificial Intelligence for Disaster 

Response (AIDR) system performs automatic classification of signal versus noise. Though it is 

designed for tweets, it is specifically a text only system. AIDR uses machine learning methods 

that are trained on human labeled-data. This has produced quite impressive results. Specifically, 

AIDR’s accuracy has been reported at 80% for identifying relevant tweets during the 2013 

Pakistan earthquake (Imran et al., 2014).  Imran and colleagues (2013) also leveraged machine 
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learning to understand how individuals extracted valuable “information nuggets,” which are 

defined as brief, self-contained information items that could be deemed relevant to man-made 

disaster response.   

Tweedr is another machine-based pipeline that uses tweets to extract actionable 

information for disaster relief workers (Ashktorab, 2014); this tool uses classification, clustering 

and extraction. Recent work studying the use of social media used during Hurricane Harvey by 

O’Neal et al. (2018) employs supervised learning methods, specifically with images, as AIDR 

and Tweedr are text-based. O’Neal et al.’s (2018) study, however, is not focused on Twitter, but 

seeks to evaluate the use of supervised learning based on samples of private social media data. 

Deep learning methods are not evaluated, nor are training sets developed from noisy, public 

social media platforms. However, their work suggests machines are likely able to learn from 

human knowledge and leverage this to classify the basic features of images by categories (e.g. 

rescuee and rescuer). In Elbanna et al.’s (2019) work, a series of workshops with first responders 

revealed the need for machine learning to be applied to social media data in meaningful ways, 

given that disaster victims are increasingly using social media as their first lifeline in crises. In 

turn, governmental agencies who manage disasters are interested in novel methods to capture 

emerging social media use during disasters — and machine learning may be one way to classify 

those who need help. 

2 Research Questions 

Based on our review of the literature, the need suggested by Elbanna et al. (2019), and 

the call to action proposed by O’Neal et al. (2018), we propose the following research question: 

RQ1: Can we achieve high, real-time accuracy and classification rates of images – 

ignoring included text - posted to Twitter during a natural disaster for aid-and-need using deep 
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learning machine methods with a human in the loop?  If so, can this be done on harder 

classification tasks such as the time period an image corresponds to or the state of urgency an 

image represents? 

Our next goal is to gather insights from manual coding of images posted to Twitter 

during a natural disaster and compare those to developing training sets for deep learning 

methods. Therefore, we propose the following research question: 

RQ2: What are the unique values of human coding inputs when deployed alongside deep 

learning methods?  

3 Method 

3.1 Data Collection 

To collect data, we used Twitter’s 1% random ‘Spritzer’ sample retrieved directly from 

Twitter’s streaming API. We studied tweets from August 17, 2017 to September 17, 2017 and 

extracted from our Spritzer sample all Hurricane Harvey-related tweets with the keywords: 

'hurricane', 'harvey', 'hurricaneharvey', 'harveyhouston'. From these tweets, we extracted all the 

non-video media-related links to retrieve images. Duplicate images were removed by computing 

an MD5 checksum for each image, which is an “algorithm that is used to verify data integrity 

through the creation of a 128 bit message digest from data input (which may be  a message of 

any length); the product is claimed to be as unique to that specific data as a fingerprint is to the 

specific individual” (Ahmad et al., 2012, p. 132). An MD5 checksum “scheme guarantees storing 

exactly the same file only once and easily identifying duplicates or near duplicates (accounting 

for images in various formats, at different resolutions and with minor modifications such as some 

watermarks)” (Villegas, 2009, p, 3). 
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The resulting total number of images was 23,692. 17,483 images remained after 

duplicates and empty images were removed. To develop the training dataset for our deep 

learning classification study, we randomly sampled 1,128 images (approximately 6.45%) and 

human coded these images using a rubric with 10 questions [see human coding information in 

4.2 and Appendix A for the rubric]. 

3.2 Deep Learning Pipeline 

In this section, we describe the methodology used to classify images by time period and 

urgency. A high-level overview of our methodology is illustrated in Figure 1.  

 

Figure 1: High-Level Overview of Image Classification Pipeline 

3.2.1 Transfer Learning for Feature Extraction 

Transfer learning refers to application of knowledge gained by solving a prior problem to 

a new, but related problem. The effectiveness of classic deep learning methods, like 

Convolutional Neural Networks, is limited by the size of the training set (Hosseini et al., 2017); 
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transfer learning offers the benefits of these deep learning methods while not requiring a large 

training set. The high dimensionality of images, typically represented as a matrix of pixels where 

each pixel has a value for its red, green, and blue elements, can be challenging for traditional 

machine learning methods to interpret. Instead of feeding raw images into models, images can be 

fed into convolutional neural networks to reduce the dimensionality of images. These networks 

use convolutional and pooling layers to extract features, or “feature vectors” before making a 

classification or regressive prediction. These feature vectors can be understood as the collection 

of nonlinear features, such as edges, shadows, and areas of interest that fully describe the original 

image. In this way, pre-trained convolutional neural networks trained on large, diverse datasets 

can be used as feature extractors for other machine learning tasks (Hertel, Barth, Kaster, 

Martinez, 2015).  

For the purpose of this study, we used VGG-16, a popular convolutional neural network 

traditionally used to classify images into categories of objects, as a method of feature extraction 

(Simonyan & Zisserman, 2015). Instead of classifying candidate images into categories, we 

collected the output from the second-to-last layer of VGG-16 before classification and treated 

this output as a feature vector representing each image.  

3.2.2 Multi-Layer Perceptron Models (MLPs) 

After extracting the feature vectors for each model, two multilayer perceptron networks 

were constructed to classify images by time period and urgency for the labeled images. For each 

model, the image and label pairs were randomly split into a training and validation set, where 

each set represented a stratified random sample of images and their corresponding labels. 

Ultimately, the training set constituted 67% of the total images and the validation set consisted of 

the remaining 33% images.  
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Each model was evaluated against the categorical cross-entropy loss function (Zhang & 

Sabuncu, 2018) and its classification accuracy. Error minimization was achieved using the Adam 

optimizer, which has been shown to converge faster compared to traditional methods like 

stochastic gradient descent (Kingman & Ba, 2017). To combat the effect of class imbalance on 

model training, we scaled the penalty on misclassification according to the proportion of samples 

which contained that label. Furthermore, each model was trained with early-stopping, which 

halts model training once an increase in training accuracy is accompanied by a significant 

decrease in the validation accuracy of the model.  

Each feed-forward network consisted of three dense layers, with each subsequent layer 

having fewer nodes than the previous layer. Each layer contained a sigmoidal activation function 

to normalize each layer’s output to values between 0 and 1. Furthermore, each dense layer was 

succeeded by a dropout layer, which randomly reset the weights of a subset of nodes in that 

layer. Finally, the output of the last dense layer is passed through a softmax activation layer so 

that the final output of each network represented a classification probability for each of the 

relevant classification categories. Figure 2 describes the architecture of the feedforward networks 

used to classify each attribute.  
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Figure 2: MLP Classifier Architecture 

4.1 Results of Transfer Learning 

4.1.1 Time Period Classifier 

The first classifier constructed predicted the time period defined as pre-storm (August 17, 

2017 to August 25, 2017; n = 124 images), landfall (August 26, 2017 to September 1, 2017; n = 

735 images), and Harvey’s aftermath/immediate cleanup (September 2, 2017 to September 17, 

2017; n = 269 images). The time period classifier ultimately reached a training accuracy of 

0.8954, a training loss of 0.3325, a validation accuracy of 0.6461, and a validation loss of 1.0172 

in 5 epochs, defined as a full training cycle on the training set, in batches of 32. Figure 3 below 

illustrates the changes in training and validation accuracy and categorical cross entropy for each 
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epoch of training. Prima facie, the high performance of the time period classifier seems to 

indicate that deep learning methods based on a small sample of images could be quickly 

deployed to identify whether the post date of an image on social media likely corresponded with 

not only when the image was taken, but, whether it content-wise corresponded to before, during, 

or after a disaster hit.   

      

                            

Figure 3: Time Period Classifier Accuracy and Loss by Epoch 
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Figure 4 shows a heat-mapped confusion matrix for the time period classifier on the 

validation data.  

 

Figure 4: Confusion Matrix for Time Period Classifier 

However, as the confusion matrix illustrated in Figure 4 indicates, this is likely due to the 

classifier guessing time period 1 ‘landfall’, rather than actually developing human-like neural 

pathways for recognizing what stage the disaster occurred at. Specifically, despite the time 

period classifier’s relatively high accuracy, the confusion matrix for the time period classifier 

suggests the model’s tendency to predict time period ‘1’ regardless of an image’s feature vectors, 

despite our attempt to penalize such misclassifications by scaling the penalty in accordance with 

the relative frequency of the time period labels. It is likely that the classifier simply predicts time 

period ‘1’ because the optimal accuracy for the classifier is achieved when the majority of 

images are classified as the most frequent time period. Of the 89 images in the validation set 

from time period ‘2’, only 6.7% were classified correctly; likewise, of the 41 images from time 
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period ‘0’, only 7.3% were classified correctly. The high performance of our model could also be 

explained by class imbalance rather than the extraction of useful feature vectors. The implication 

of this for the study of images posted during disasters is that people are still sharing and 

communicating images more frequently during, rather than before or after a disaster.  

 
Figure 5: Frequency of Images by Time Period 

 

The frequency of images posted during the disaster is significantly larger than images 

posted before or after. Figure 5 above provides a frequency distributed from the images coded. 

This may suggest that, despite the restrictions on power and cellular service imposed during a 

disaster, images remain a valuable and important medium for people to communicate during 

natural disasters (Smith et al., 2018). Furthermore, the time period classifier’s poor performance 

when classifying time period may suggest that, in order for deep learning classifiers to be 

successful, a large dataset of labeled image is needed. In scenarios where classification of these 

images is time-sensitive, this suggests that deep learning models for time period classification 

may require more human labeling than traditional methods of image classification. 

4.1.2 Urgency Classifier 
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The urgency classifier was trained to predict the urgency of an image into different 

levels. Saldana (2012) suggests that it is important to identify the level of importance of a social 

media post by adding a magnitude coding to the coding scheme. Here, images were ranked in 

terms of importance to Hurricane Harvey (4 = highly urgent, 3 = moderately urgent, 2 = 

somewhat urgent, 1 = not urgent, 0 = spam/unrelated to Hurricane Harvey), similar to Iakovou 

and Douligeris (2001) recommendations on severity of a hurricane. The urgency classifier 

ultimately reached a training accuracy of 0.6768, a training loss of 0.8868, a maximum 

validation accuracy of 0.3038, and a validation loss of 1.7252 in 5 epochs, where each epoch 

represents a single pass of all training data through the network in batches of 32. Figure 6 below 

illustrates the changes in training and validation accuracy and categorical cross entropy for each 

epoch of training.  
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Figure 6: Urgency Classifier Accuracy and Loss by Epoch 

Figure 7 shows a heat-mapped confusion matrix for the time period classifier on the validation 

data.  

 
Figure 7: Confusion Matrix for the Urgency Classifier 
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Similar to the time period classifier, the confusion matrix for the urgency classifier suggests that 

the model tends to favor predicting that an image belongs to urgency levels of ‘0’ and ‘2’; 71.4% 

of the model’s predictions belong to one of these categories, whereas 64.4% of the validation set 

consists of images labeled as either ‘0’ or ‘2’. Table 1 summarizes the empirical results for both 

of the trained classifiers.  

Classifier Training Loss Training 
Accuracy 

Validation Loss Maximum 
Validation 
Accuracy 

Time Period 0.3325 0.8954 1.017 0.6461 

Urgency 0.8868 0.6768 1.7252 0.3038 
 

Table 1: Empirical Results of Classifiers 
 

Both classifiers indicate issues as revealed by Confusion Matrix testing (see Figures 4, 7). This is 

not uncommon with image classification testing; however, this suggests some instabilities with 

our models, particularly as it relates to class imbalance. In the case of the time-period classifier, 

it is possible that additional data, from the less-frequently occurring classes could address the 

issue posed by class imbalance. While the urgency classifier displays many of the same issues as 

the time period classifier, it is possible that filtering out the ‘spam’ images, marked as ‘0’, prior 

to model training, could improve the performance of the classifier. Despite these results, we 

believe that coding a larger random sample of images, coupled with filtering out the images 

labeled ‘spam’ prior to model training could improve the performance of the classifiers. 

4.2 Human Coding Results 

To help answer RQ1 and RQ2, human coding content analysis was used, as both a way to 

create a training model, and for its own unique qualitative utility. In this section, we detail our 
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qualitative method and results of this study. For this analysis, 1,128 images (from the 17,483 

images) were randomly selected to be manually coded by two coders (approximately 6.45%). 

A preferred method is to do a content analysis by creating a coding schema and manually 

code to evaluate tweets—the unit of analysis (Krippendorff, 1980; Bruns, Burgess, Crawford, & 

Shaw, 2012). In our study, the unit of analysis is images posted on Twitter. Understandably, 

images are far more challenging than text and due to the large volume of images needed to 

interpret, our coding methods focused on broader ‘motif’ categories, a common practice in 

disaster-related social media research (Murthy et al., 2016; Vieweg et al., 2010). Each image was 

coded using a closed-deductive codebook, and the coding framework was theoretically derived 

from previous literature (Krippendorff, 1980) that represented the following variables: the 

urgency of the image (Iakovou & Douligeris, 2001; Saldana, 2012), type of image posted (Paul, 

2015), a description of the image (Paul, 2015), and the type of motif the image represented 

(Murthy et al., 2016). The categories we used for coding were designed to relate to all three 

phases of Harvey: pre-storm, landfall, and Harvey’s aftermath and immediate cleanup. See 

Appendix A for codebook.  

4.2.1 Coder training and intercoder reliability 

Prior to coding, the authors used the literature to draft an initial coding framework. Two 

coders coded the same dataset, and average Cohen’s kappa was 0.937 across coded categories, 

signifying very strong coder agreement. The coders held a meeting prior to coding to discuss the 

codebook and trained with a sample dataset for practice together. Throughout coding, the coders 

met twice to discuss operationalization and trends that emerged from the coding process.  

4.2.2 Frequency data 
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Drawing from Stephens & Malone’s (2010) content analyses methodology, we present 

the results of the content analyses as frequencies to provide a grounding for the deep learning 

methods used in study one of this manuscript. It appears almost one third (exactly 31.6 percent) 

of images shared on Twitter were not related to the Hurricane Harvey disaster (e.g., spam or 

noise), while 31.2 percent of images shared were seen as ‘somewhat urgent’ in the perception of 

an image’s urgency. See Figure 8 below. We can perhaps interpret these results by demonstrating 

that highly urgent information was not necessarily disseminated through Twitter images during 

Harvey (7.7 percent of Twitter images were coded as highly urgent). Research (see Smith et al., 

2018; Stephens et al., 2018) explains that highly urgent information (including addresses and 

phone numbers for rescues) during the disaster was often shared through private social media 

feeds, not public. 

 
Figure 8: Urgency of Image to Hurricane Harvey 

Using Paul’s (2015) typology of social media posts shared during a disaster, we find that 

many posts shared during Hurricane Harvey were reports (n = 740), including reports of damage, 

reporting community behavior, and reporting news coverage. Note that the sample size does not 
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add up to 1,128, as some images did not fit the typology, and other images could fit more than 

one code. We also see requests (n = 26) were not shared as much as reports and reactions. 

Requests included immediate help and rescue, material support, medical assistance, or simply for 

information. Like the ‘highly urgent’ finding above, it makes sense that perhaps Twitter was not 

used during Hurricane Harvey for requesting aid and need in situations requiring highly urgent 

and time sensitive assistance, following in line with Smith and colleagues’ (2018) finding that 

private social media platforms (e.g., neighborhood Facebook groups and Nextdoor community 

pages) were used more frequently for the purposes of seeking and providing rescue to teams with 

high-water rescue boats. 

 
Figure 9: Type of Image (n.b. sample size does not total 1,128 as some images did not fit the 

typology altogether, and some images fit more than one typology).  

 
 Finally, drawing from the work by Murthy and colleagues (2016) looking at images 

crossed-posted to Twitter and Instagram during Hurricane Sandy, we employ their same coding 
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framework to image motifs shared during Hurricane Harvey. Murthy et al. (2016) argue that 

using motif categories allows us to understand the basic social experience of disasters. 

 FREQUENCY PERCENT 

AD 5 0.25 

ANIMALS 56 2.85 

DAMAGE 295 15.03 

DRINK 15 0.77 

FOOD 20 1.02 

GEAR 99 5.05 

MACRO 66 3.40 

OTHER 404 20.59 

OUTSIDE 492 25.07 

PEOPLE 428 21.81 

RELIEF 82 4.18 

TOTAL 1962 100% (not exact due to rounding) 

Table 2: Frequency of Coded Image Motifs 

Table 2 illustrates the frequency of codes applied to images. The majority of the motifs can be 

taken at face value, however, the “MACRO” motif was used to denote ‘image macros’, images 

that have a “picture superimposed with text with a specific purpose of being funny” (Murthy et 

al., 2016, p. 119). The motif of “GEAR” included any equipment or supplies (e.g., boats, trucks, 

etc.). Aggregated frequencies are important because they help to tell alternative stories of 

Harvey, rather than simply mainstream accounts of the disaster. Specifically, there is a high 

frequency of the motifs OUTSIDE (defined as images depicting the built environment, nature, or 
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spaces/places not indoors), PEOPLE (defined as images depicting people, not inclusive of 

cartoon depictions of people; inclusive of selfies, individuals, and groups of people) and 

DAMAGE (defined as images depicting storm-related damage to the built environment). We 

interpret this as individuals’ desire to document the disaster experience through showcasing 

weather-related conditions, instances of flooding, and high-water rescues. This is in juxtaposition 

to the low frequency of RELIEF (defined as images depicting relief efforts and relief campaigns, 

inclusive of screenshots of relief campaigns). We also have ‘OTHER’ with a relatively high 

frequency. As the two coders met to discuss findings from the dataset, they agreed that a large 

number of the images includes maps, weather radars, or wind and rainfall predictions (n = 168 

that included “map”). “MAPS,” as an emerging motif category in our data, give credence to the 

idea that during this disaster, people were more concerned about the prediction of weather and 

changes in the forecast. This is an important change in the image corpora of Hurricane Sandy 

versus Harvey. Together, these image frequencies help sketch an outline of the types of 

narratives that unfolded during Hurricane Harvey. Taken together, the motifs paint a picture of 

the disaster from the lived experiences of the individuals who experienced it. 

5 Discussion 

 In this paper, we present a framework for feature extraction using the VGG-16 

convolutional neural network and construct multilayer perceptron classifiers for classifying the 

urgency and time period for a given image. This framework was created through a qualitative 

deductive coding schema, in which the qualitative results (presented as frequencies) describe the 

unique disaster experience through the eyes of photos. Of course, the images produced during a 

natural disaster on social media have value to understand how aid and relief can be facilitated, 

but finding genuine content (and not noise), is not straightforward and we detail our approach to 
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address these challenges and provide initial results for our deep learning image classification 

methodology.  

 The results obtained by using transfer learning to extract features to feed to a simple 

multi-layer perceptron model indicate both models learned the relationship between feature 

vectors from the VGG-16 model and each image’s urgency and time period beyond random 

guessing; however, the tendency of both models to grossly misclassify images towards more 

frequent labels suggests a lack of robustness for our trained models. We suggest two possibilities 

for the weak performance of our classifiers: class imbalance and dataset size.  

Class imbalance: The descriptive analysis on the frequency of labels for time period and 

urgency coupled with each model’s tendency to favor labels which occur more frequently 

suggest class imbalance as a potential explanation for the weak performance of our models. 

While solutions to the class-imbalance problem exist on both data and algorithmic levels 

(Krawczyk, 2016), the class imbalance in the dataset used for our study could be explained by 

the inherent bias in human-coding. This bias may be present when images are more likely to be 

classified as ‘spam/not relevant’ and ‘somewhat urgent’ due to the inclusive, catch-all wording 

of these categories. 

Dataset size: Recent literature suggests that transfer learning for feature extraction can be 

useful when the number of available training samples is low (Zhao, 2017). However, the noisy, 

diverse set of images characteristic of those posted on Twitter can be difficult to capture in such 

a small number of samples, even with transfer learning. It is possible that the sample of images 

collected in this study do not adequately encapsulate the patterns and relationships between the 

feature vectors collected from VGG-16 and therefore the deep learning models constructed are 

unable to extract meaning from the feature vectors and their corresponding labels.  
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In terms of qualitative results, the use of qualitative image coding was important, not only 

for creating the training model, but on its own merit, as scholars argue that image content on 

social media goes beyond how people experienced the disaster firsthand, and these images 

reflected the vantage point of disaster victims and official relief and rescue organizations. Our 

results demonstrate that highly urgent and time sensitive images (including requests for 

immediate help, material support, and information) were the least shared on Twitter. This makes 

sense given the context of Hurricane Harvey, where those seeking help and those providing help 

often used private social networks for rescue efforts. Therefore, the utility of tweets for urgent 

aid requests during disasters might be overemphasized in existing literature. We also expand 

upon the motif framework provided by Murthy et al. (2016) and find that maps emerged as a 

motif category in our dataset. This indicates that there are some changes in the types of images 

being posted during Hurricane Harvey versus Hurricane Sandy. Computational work with future 

hurricane data would be useful to chart changes in image motifs over time and whether particular 

types of disasters (earthquake versus hurricane) caused major changes in motif types and their 

frequency.  

 The tendency of both classifiers to act as ‘lazy’ classifiers and predict only the most 

frequent categories may suggest that, in their current state, these deep learning classifiers require 

additional tuning, data, and preprocessing in order to truly be effective. For example, it is 

plausible that filtering out the spam and irrelevant images from the dataset the urgency classifier 

could drastically improve the classifier’s ability to learn the complex relationships between the 

feature vectors and their corresponding urgency and time period labels. In Table 3 below, we 

present a summary of the comparison between our machine learning and human-coded results. 
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MACHINE LEARNING RESULTS HUMAN-CODED RESULTS 

• Successfully used transfer learning to 
extract features to feed to a simple 
multi-layer perceptron model indicate 
both models learned the relationship 
between feature vectors from the VGG-
16 model and each image’s urgency and 
time period beyond random guessing. 

• However, the tendency of both models 
to grossly misclassify images towards 
more frequent labels suggests a lack of 
robustness for our trained models. 

• If images are time-sensitive, a deep 
learning models for time period 
classification may require more human 
labeling than traditional methods of 
image classification. 

• Coding a larger random sample of 
images, coupled with filtering out the 
images labeled ‘spam’ prior to model 
training could improve the performance 
of the classifiers. 

• Close to one third (exactly 31.6 percent) 
of images shared on Twitter were not 
related to the Hurricane Harvey disaster, 
while 31.2 percent of images shared 
were seen as ‘somewhat urgent’ in the 
perception of an image’s urgency. 

• Many posts shared during Hurricane 
Harvey were reports (n = 740), 
including reports of damage, reporting 
community behavior, and reporting 
news coverage. 

• Many images shared represented 
thematic motifs of outside, people and 
damage. Maps emerged as a motif to 
depict weather-related conditions. 

• These human codes serve, not only on 
their own qualitative/content analysis 
merit, but work hand-in-hand within the 
image classification of the deep-learning 
pipeline. 

Table 3: Comparison of Machine Learning and Human Coded Results 

6 Conclusion 

Overall, it is crucial to continue probing how machine learning can aid in disaster 

response, particularly considering that the 9-1-1 system in the United States can become 

overloaded with calls for help. The scale of social media data relevant to studying disasters is 

only likely to grow. This study is novel by taking a first step at investigating whether or not deep 

learning machine methods can filter through the noise on social media and identify authentic 

calls for help or urgent situations during a disaster.  

This study is one of the first studies to combine qualitative methods and results using a 

traditional content analysis with ‘deep’ machine learning methods. While both methods inform 

each other in our study, they also provide utility on their own. After reviewing the literature, our 

team found that no study has used these two methods together. Although our classifiers did not 
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perform as expected, our research opens the door for new interdisciplinary methods to be used in 

future disaster research. 

Our study does have some limitations. Specifically, we use 1,128 randomly selected 

images (approximately 6.45%) from a larger corpus of 17,483 images. While smaller data sets 

have been found to be acceptable for transfer learning methods, the classifiers still performed 

weaker than anticipated. Coding a larger percentage of images may be more useful for both 

transfer learning and traditional content analyses, and our future work seeks to address this. This 

analysis also did not include the use of rumors or misinformation, but this was common during 

Hurricane Harvey (see Stephens et al., 2018 for examples of how citizens dealt with 

misinformation). Finally, our work only addressed images shared on Twitter. Other social media 

platforms, including private Facebook groups, Nextdoor, Instagram, WeChat, Mastodon and 

Weibo are also likely to be fruitful venues of data for future work seeking	to understand image-

based sharing. 

Our results have particular significance to hurricane events and we are unsure how 

generalizable our findings are to other disasters – particularly outside the contiguous U.S. – 

another limitation. As Palen and Hughes (2018) lament, lessons learned from one kind of 

emergency may not be applicable to others, even when the medium stays the same. Although 

Hurricane Harvey and its affect to the greater Houston area was unique, our work provides a new 

framework that could be readily drawn upon when disaster strikes. 
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Appendix A 

Theoretical Codebook 
Date/Image 

• Date of Image 
• Image Number 

 
Time Period 

• 1 = immediately prior: August 17 to 25 
• 2 = during: August 26 to September 1, 2017 
• 3 = after/immediate clean-up efforts: September 2 to September 17, 2017 

 
Relevancy to Hurricane Harvey 

• 0 = no 
• 1 = yes 
• 2 = uncertain 

 
Urgency of Image (Iakovou & Douligeris, 2001; Saldana, 2012) 

• 4 = highly urgent 
• 3 = moderately urgent 
• 2 = somewhat urgent 
• 1 = not urgent 
• 0 = spam/unclear relationship to disaster 

 
Type of Image in a Disaster (Paul, 2015)  

• 1 = Request 
• 2 = Report 
• 3 = Reaction 

 
Description of Type of Image (Paul, 2015) 

• 1 = request for material support 
• 2 = request for medical assistance 
• 3 = request for information 
• 4 = request for immediate help/rescue 
• 5 = report of damage 
• 6 = reporting community behavior 
• 7 = report of news coverage 
• 8 = reaction from community 
• 9 = reaction from official sources 

 
Motif (Murthy, Gross, McGarry, 2016) 

• 1 = ad 
• 2 = animals 
• 3 = damage 
• 4 = drink 
• 5 = food 
• 6 = gear 
• 7 = macro 
• 8 = outside 
• 9 = people 
• 10 = relief 
• 11 = other 

 
Image attributes/keywords [open ended] 

• map, meme, cartoon, celebrity, water, house, street, bridge 
 
Text attributes/keywords [open ended] 

• percentage, address, request, phone number 


